TMSP 21/22 Problems 2, 22.03.2022

(Please solve each problem on a separate sheet of paper)

1. The Widom scaling hypothesis predicts the following scaling form of the singular part of the free energy density:

$$g(\tau,h) = |\tau|^{2-\alpha} \Phi_{\pm} \left(\frac{h}{|\tau|^{\beta\delta}}\right) \quad . \tag{1}$$

Consider the Landau theory in the presence of uniform magnetic field h

$$\beta \mathcal{H}_{eff}(m) = \beta G_0(T) + V \left(\frac{a\tau}{2}m^2 + \frac{u}{4!}m^4 - hm\right)$$
(2)

and show that within Landau theory one indeed obtains the above form of $g(\tau, h)$. What can one say about the form of functions $\Phi_{\pm}(x)$?

2. Consider the Landau theory and calculate $c_H(T, h = 0)$. What is the corresponding value of the critical exponent α ?

3. Molecular field theory.

- 1. consider h = 0 and solve the corresponding equation for $m(\tau, 0)$ for $|\tau| \ll$ 1. What is the corresponding value of exponent β ?
- 2. evaluate exponent δ .
- 3. evaluate and make schematic plot of $g(\tau, h = 0)$
- 4. evaluate $\Delta c_H = c_H(T_c^+, 0) c_H(T_c^-, 0)$. What is the value of exponent α ?

4 (not obligatory). Potts model

Consider lattice with N sites. Each site is occupied by a "spin" σ which can take q-values such that $\sigma_i = 1, \ldots, q$. The Potts Hamiltonian has the form

$$\mathcal{H}_{Potts}(\{\sigma_i\}) = -J \sum_{\langle ij \rangle} \delta_{\sigma_i,\sigma_j} - h \sum_{i}^{N} \delta_{\sigma_i,1}$$
(3)

where $\delta_{a,b}$ is the Kronecker delta. Impose periodic boundary conditions and - with the help of transfer matrix method - evaluate the partition function Z(T, h, N) and g(T, h).